

OpenEMR Auditing and ATNA
Design and Implementation

Prepared by ViSolve
Contact: 408.666.4320

 Email: vicareplus_support@visolve.com

www.vicareplus.com

18th January 2010

Table of Contents

1. Introduction... 4

2. Existing Audit Framework in OpenEMR 3.1.0... 4

3. Audit Requirements Review .. 4

4. Auditing the new Events (Implementation) .. 6

5. Sending Audit Events to an ATNA Repository ... 9

6. Creating an ITI-19 (SSL) connection .. 11

Revision History

Version Date Author Reviewed By

1.0 01/08/2010 ViCarePlus Team Team
2.0 01/18/2010 ViCarePlus Team Team

1. Introduction

The purpose of this document is to describe the design and high-level implementation of the auditing requirements in
OpenEMR. There are two main standards that define auditing requirements for EHR systems:

CCHIT Ambulatory Audit Requirements
http://www.cchit.org/sites/all/files/
CCHIT%20Certified%202011%20Ambulatory%20EHR%20Criteria%2020091006.pdf

ATNA (Audit Trail and Node Authentication)
http://www.ihe.net/Participation/upload/IHE-ITIATNA-CT-08.ppt

2. Existing Audit Framework in OpenEMR 3.1.0

OpenEMR 3.1.0 contains an existing audit framework. The audit table is the 'log' table, which has the following columns:

id bigint(20) The primary key
date datetime The date and time of the event
event varchar(255) The possible events are "login", "logout",

"view", "delete", "authorize"
user varchar(255) The user logged in.
groupname varchar(255) The group the user belongs to.
comments longtext For login/logout, the comments include

the IP address of the user, and whether
the login was successfull.

For view, the comments include the
name of the patient.

user_notes longtext Not used.

The function
function newEvent($event, $user, $groupname, $comme nts="")

in file openemr-3.1.0/library/log.inc is used to add an entry to the audit 'log' table.

OpenEMR currently logs the following events:

• login - File auth.inc. An audit entry is made for both successfull and failed logins.
• logout - File auth.inc. An audit entry is made for both direct logouts, and logouts due to timeouts.
• view - File auth.inc. Once a patient is selected, every time a page is visited, a 'view' event is generated with that

patient's name.

3. Audit Requirements Review

Both CCHIT and ATNA provide a list of events to audit. The table below lists both the CCHIT and ATNA audit events, and
a brief description of each event, as per our understanding.

Table 1 – Audit Events Description

CCHIT Event ATNA Event Description
start/stop actor-start-stop The application (Apache and MySQL) is

started or stopped.

Apache: /usr/local/apache/log/error_log
MySQL: /usr/local/mysql/data/<host>.err

user login/logout A user performs a successful or failed
login/logout. These events are already
audited in the file openemr/library/auth.inc

session timeout A user attempts to access a page using an
expired session. This event is already
audited in auth.inc

account lockout A user account has the 'active' field set to
yes/no by the administrator. OpenEMR
currently does not have any automatic
lockout after a number of failed logins.

patient record created,
viewed, udpated, deleted

procedure-record-event
patient-record-event

A patient record is created, modified,
viewed, or deleted.

scheduling patient-care-assignment A patient appointment is scheduled or
updated.

query images-availability-query
query-information

Some persistent data (data in the
database) is queried. For example,
hospital or pharmacy information. This
suggests that all SQL SELECT queries
must be audited.

order order-record-event An order is placed for a medical service or
medical item (like a prescription).

node-authentication-failure node-authentication-failure A node fails to authenticate by using an
incorrect SSL client certificate. SSL client
certificate failures are logged to the
Apache errorlog.

signature created/validated Also, a document or piece of data is
signed with an RSA/DSA key. Currently,
OpenEMR does not create/validate digital
signatures on documents.

PHI export PHI export Patient information is exported. This also
overlaps with a patient-record view event.

PHI import PHI import Patient information is imported. This also
overlaps with a patient-record
create/update event.

security administration security administration Events such as creating/updating users
and groups that login to the system.

backup and restore Backing up or restoring the OpenEMR
data.

 audit-log-used The audit log was read or modified.
 begin-storing-instances
 health-service-event Any misc health related auditable events.
 instances-deleted A DELETE is performed on data in the

database.
 instances-stored An INSERT or UPDATE of data is

performed on the database
 medication Medication is prescribed or delivered.
 mobile-machine-event Mobile equipment is relocated, leaves the

network, and rejoins the network.
 patient-care-episode Patient information other than medical

records (such as an appointment).
 study-object-event A study report is created, modified, or

deleted.

 study-used A study report is viewed.

The audit entries should contain the following information:

• The date and time of the entry
• The type of event
• The patient identifier (where relevant)
• The user identity
• The client certificate name
• The group the user belongs to
• The outcome (success or failure)
• The checksum for the current record (for ‘update’,’insert’ and ‘replace’ statements)
• Details of the event [The entire sql query is stored]

When transmitting audit entries to a separate ATNA repository machine, the following additional information is needed:

• Hostname or IP address of machine that generated the audit entry
• The application which generated the entry (OpenEMR)
• The IP address of the destination ATNA audit repository.

4. Auditing the new Events (Implementation)

The events are audited only if the ‘enable_auditlog’ is set to 1 in globals.php.
$GLOBALS["enable_auditlog"] = 1;
$GLOBALS["audit_events"] = array("patient-record"=> 1,
 "scheduling"=>1,
 "query"=>1,
 "order"=>1,
 "security-administ ration"=>1,
 "backup"=>1,
);

We can also enable/disable the logging of following configurations through globals.php
patient-record
scheduling
query
order
security-administration
backup

The audit log table includes three additional columns: patient_id, success and client certificate name
The database.sql file will be modified to include these additional columns.

Next, we would like to audit the events above without having to modifying every PHP page. Almost all the events above
involve reading or writing data to the database. We can therefore capture all these audit events by intercepting each
database call, determining the event type, and writing an audit entry. For example, the sqlStatement() function would be
modified as follows:

function sqlStatement($statement)
{
 $query = mysql_query($statement, $GLOBALS['dbh']) ;
 if ($query === FALSE) {
 auditSQLEvent($statement, FALSE);
 HelpfulDie("query failed: $statement", mysql_er ror($GLOBALS['dbh']));
 }

 auditSQLEvent($statement, TRUE);
 return $query;
}

The sqlStatement() is just one place where database calls are made. All locations where database calls are made
must be modified to also call auditSQLEvent().

The function auditSQLEvent() will create an audit entry based on the SQL query made. The outcome of the query
(success or fail) is also passed to the function. The auditSQLEvent() function will work similar to the following
pseudocode:

function auditSQLEvent($statement, $outcome) {
 $user = $_SESSION['authUser'];
 $group = $_SESSION['authGroup'];
 $comments = $statement;
 $success = ($outcome === FALSE) ? 0 : 1;
 $event = get_audit_event_type($statement);
 $patient_id = 0;
 if (array_key_exists('pid', $_SESSION) && $_SESSI ON['pid'] != '') {
 $patient_id = $_SESSION['pid'];
 }
 $sql = "insert into log (date, event, user, group name, comments, patient_id, success) "
 . "values (NOW(), " . qstr($event) . ", " . qst r($user) . "," . qstr($group) . ","
 . qstr($comments) . "," . qstr($patient_id) . ", " .qstr($success) . ")";
}

We can determine the event type based on the tables viewed/modified in the SQL statement.
Below is a summary of which tables correspond to which audit events:

Table 2 - Audit Events Implementation

CCHIT/ATNA Event Implementation
start/stop
actor-start-stop

No OpenEMR changes needed.
Use the Apache/MySQL log files.

user login/logout Use existing audit calls in auth.inc.
session timeout Use existing audit calls in auth.inc
account lockout The query string contains "UPDATE users" and "active = 0"
patient record created,
viewed, udpated, deleted
patient-record-event
procedure-record-event

The query string contains one of the following tables:

billing
claims
employer_data
forms
form_encounter
form_dictation
form_misc_billing_options
form_review_ofs
form_ros
form_soap
form_vitals
history_data
immunizations
insurance_data
issue_encounter
patient_data
payments
pnotes
prescriptions
transactions
lists
onotes

scheduling
patient-care-assignment

The query string contains the table 'openemr_postcalendar_events'

query
query-information
images-availability-query

Logging all the “select” statements

order
order-record-event

The query string contains the table 'drugs'.

node-authentication-failure No OpenEMR changes needed.
Use the Apache error log.

signature created/validated OpenEMR currently doesn't use digital signatures for documents.
PHI export Currently, we are unable to distinguish between a PHI export and a patient-record-

view event.
PHI import Currently, we are unable to distinguish between a PHI import and a patient-record-

update event.
security administration The query string contains one of the following tables:

users
groups
facility
pharmacies
addresses
x12_partners
insurance_companies
codes
registry
phone_numbers
gacl_acl
gacl_acl_sections
gacl_acl_seq
gacl_aco
gacl_aco_map
gacl_aco_sections
gacl_aco_sections_seq
gacl_aco_seq
gacl_aro
gacl_aro_groups
gacl_aro_groups_id_seq
gacl_aro_groups_map
gacl_aro_map
gacl_aro_sections
gacl_aro_sections_seq
gacl_aro_seq
gacl_axo
gacl_axo_groups
gacl_axo_groups_map
gacl_axo_map
gacl_axo_sections
gacl_groups_aro_map
gacl_groups_axo_map
gacl_phpgacl

backup and restore Logging happens through backup.php. No restore activity present in openemr
Events specific to ATNA
audit-log-used The query contains the table "log".
begin-storing-instances
health-service-event
instances-deleted A DELETE query is performed that doesn't match any other events..
instances-stored An INSERT or UPDATE query is performed that doesn't match any other events.
medication The query contains the table 'prescriptions'. This can also be classified as a

patient-record event, since medication is prescribed to a specific patient.
mobile-machine-event
patient-care-episode

study-object-event .
study-used

5. Sending Audit Events to an ATNA Repository

In order to send audit events to an ATNA repository:
- We need the hostname/IP of the repository server
- We need the port of the server
- We need to generate an RFC 3881 XML Audit message
- We need to connect to the audit repository server, and send the message.

In globals.php, we can add two entries to specify the ATNA repository server:

// File globals.php
// Uncomment to forward audit entries to an ATNA audit repository server
// $GLOBALS['atna_audit_repository'] = 'host.com'
// $GLOBALS['atna_audit_repository_port'] = 6514;

The other variables used are:
+// atna_audit_localcert - Certificate to send to RFC 5425 TLS syslog server
+// atna_audit_cacert - CA Certificate for verifying the RFC 5425 TLS syslog server

If the variable $GLOBALS['atna_audit_repository'] is set, then the auditSQLEvent() function will
call an additional function to send the audit entry to the ATNA repository.

The function create_rfc3881_msg() will create the XML message given the audit data:

function create_rfc3881_msg($date, $user, $group, $ event, $patient_id,
 $outcome, $comments);

The message will have the following format:

--- -----------------
<?xml version="1.0" encoding="ASCII"?>

<AuditMessage
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-insta nce"
 xsi:noNamespaceSchemaLocation="healthcare-securit y-audit.xsd"
>

<EventIdentification
 EventActionCode="$eventActionCode"
 EventDateTime="$eventDateTime"
 EventOutcomeIndicator="$outcome"
>
 <EventID
 code="$eventIDcode"
 displayName="$eventIDdisplay"
 codeSystemName="DCM"
 />

</EventIdentification>

<ActiveParticipant
 UserID="$srcUserID"
 UserIsRequestor="true"

 NetworkAccessPointID="$srcIP"
 NetworkAccessPointTypeCode="2"
>
 <RoleIDCode
 code="110153"
 displayName="Source"
 codeSystemName="DCM"
 />
</ActiveParticipant>

<ActiveParticipant
 UserID="$destUserID"
 UserIsRequestor="false"
 NetworkAccessPointID="$destIP"
 NetworkAccessPointTypeCode="2"
>
 <RoleIDCode
 code="110152"
 displayName="Destination"
 codeSystemName="DCM"
 />

</ActiveParticipant>

<AuditSourceIdentification AuditSourceID="OTHER_SOU RCEID" />

<ParticipantObjectIdentification
 ParticipantObjectID="$userID"
 ParticipantObjectTypeCode="$userTypeCode"
 ParticipantObjectTypeCodeRole="$userRole"
>

 <ParticipantObjectIDTypeCode
 code="$userCode"
 displayName="$userDisplay"
 codeSystemName="RFC-3881"
 />

 <ParticipantObjectDetail
 type="SQL Query"
 value="Base64-encoded SQL statement"
 />

</ParticipantObjectIdentification>
</AuditMessage>
--- -----------------

The main variables are described below:

• $eventActionCode - This value is based on the type of SQL statement being audited. It will have the value 'C' for
create, 'R' for view/select, 'U' for update, 'D' for delete, and 'E' for login/logout entries.

• $eventDateTime - The current date/time, using the PHP format string DATE_ATOM.
• $eventIDcode - The choice of event codes is up to us. We will copy the event codes used by

https://iheprofiles.projects.openhealthtools.org/, which contains a Java implementation of ATNA auditing. They
use the following codes:
110101 (Audit Log Used)
110106 (PHI Export)
110107 (PHI Import)
110110 (Patient Record)
110111 (Procedure Record)
110122 (Login), 110123 (Logout)

• $eventIDdisplay - The event value of the audit record
• $srcUserID - The hostname of OpenEMR plus the application name.

$_SERVER['SERVER_NAME'] . "|OpenEMR"
• $srcIP - The IP address of OpenEMR, $_SERVER['SERVER_ADDR']
• $destUserID - The hostname of the audit repository

$GLOBALS['atna_audit_repository']
• $destIP - The IP address of the audit repository

$GLOBALS['atna_audit_repository']
• $userID - The username for Login/Logout events, or the patient id for patient-record events
• $userTypeCode - 1 (for person)
• $userRole - 1 (for patient) or 6 (for user)
• $userCode - 2 (for patient number) or 11 (for user identifier)
• $userDisplay - Either "Patient Number" or "User Identifier"

6. Creating an ITI-19 (SSL) connection

When transmitting the audit records to an audit repository, OpenEMR must establish a secure connection according to
ITI-19. That is, OpenEMR must make an SSL/TLS connection with the remote machine, and perform bi-directional
authentication, sending its own client certificate, and verifying the remote machine's certificate.

An ITI-19 SSL connection is also required for other features, such as transmitting PHI (patient health information) to
another HIE. A generic function create_tls_conn() will be used to make an ITI-19 secure connection:

/* Create a TLS (SSLv3) connection to the given hos t/port.
 * $localcert is the path to a PEM file with a clie nt certificate and private key.
 * $cafile is the path to the CA certificate file, for
 * authenticating the remote machine's certificate .
 * If $cafile is "", the remote machine's certifica te is not verified.
 * If $localcert is "", we don't pass a client cert ificate in the connection.
 *
 * Return a stream resource that can be used with f write(), fread(), etc.
 * Returns FALSE on error.
 */
function create_tls_conn($host, $port, $localcert, $cafile) {
 $sslopts = array();
 if ($cafile != "") {
 $sslopts['cafile'] = $cafile;
 $sslopts['verify_peer'] = TRUE;
 $sslopts['verify_depth'] = 10;
 }
 if ($localcert != "") {
 $sslopts['local_cert'] = $localcert;
 }
 $opts = array('tls' => $sslopts, 'ssl' => $sslo pts);
 $ctx = stream_context_create($opts);
 $timeout = 60;
 $flags = STREAM_CLIENT_CONNECT;

 $conn = stream_socket_client('tls://' . $host . ":" . $port, $errno,
 $errstr, $timeout, $flags, $ctx);
 return $conn;
}

